教育经历
2014.02--2017.07,澳大利亚格亚菲斯大学 土壤学 博士
2009.07--2012.07,中国科学院广州地球化学研究所 地球化学 硕士
2005.07--2009.07,兰州大学 地球化学 学士
工作经历
2021.09至今, 中国科学院华南植物园,生态与环境科学研究中心,副研究员;
2019.08-2021.09 中国科学院华南植物园,生态与环境科学研究中心,特别研究助理;
2017.08-2018.12 澳大利亚格里菲斯大学,未来环境研究中心,访问研究员;
2018.01-2018.12 澳大利亚昆士兰大学,可持续矿物学院矿山土地修复中心,研究助理;
2012.07-2013.12 广州海洋地质调查局,环境研究所,研究实习员。
全球变化对森林生长的影响及机制
2025.1-2026.12 广州市科技计划项目青年博士“启航”项目,5.0万元,在研,主持。
2023.1-2026.12 国家自然科学基金面上基金项目,海岸带森林恢复管理下树木生长与土壤动物摄食活动的物候联动及机制,54.0万元,在研,主持。
2023.1-2025.12 广东省基金面上项目,不同恢复管理下海岸带森林木质部生长与根系分泌物和根际微生物的物候联动,10.0万元,在研,主持。
2021.1-2023.12 国家自然科学基金青年基金项目,根表病原菌如何影响天然油松林种内竞争强度,30.0万元,结题,主持。
2019.1-2021.12 中国科学院特别研究助理资助项目,80.0万元,结题,主持。
2020.1-2024.12 国家自然科学基金重点项目,303.0万元,结题,参与。
2019.1-2021.12 广东省科技厅科技计划项目,100.0万元,结题,参与。
第一作者或通讯作者论文
1. Zhang Y, Huang J G, Wang M, et al. High preseason temperature variability drives convergence of xylem phenology in the Northern Hemisphere conifers[J]. Current Biology, 2024, 34(6): 1161-1167. e3.
2. Zhang Y, Yan Y, Huang J G, et al. Interguild fungal competition in litter and soil inversely modulate microbial necromass accumulation during Loess Plateau forest succession[J]. Science of The Total Environment, 2024, 916: 170259.
3. Wang W, Huang J G, Zhang T, et al. Precipitation regulates the responses of xylem phenology of two dominant tree species to temperature in arid and semi-arid forest of the southern Altai Mountains[J]. Science of The Total Environment, 2023, 886: 163951.
4. Wang W, Huang J G, Jiang S, et al. Response of xylem formation of Larix sibirica to climate change along the southern Altai Mountains, Central Asia[J]. Dendrochronologia, 2023, 77: 126049.
5. Huang J G, Zhang Y, Wang M, et al. A critical thermal transition driving spring phenology of Northern Hemisphere conifers[J]. Global Change Biology, 2023, 29(6): 1606-1617.
6. Wang M, Xu Z, Huang Z, et al. Soil carbon accrual under harvest residue retention modulated by the copiotroph-oligotroph spectrum in bacterial community[J]. Journal of Soils and Sediments, 2022, 22(9): 2459-2474.
7. Wang M, Zhang Y, Huang Z, et al. Limited potential of biosolids application for long-term soil carbon stabilization in coastal dune forests[J]. Geoderma, 2021, 403: 115384.
8. Tutua S, Zhang Y, Xu Z, et al. Residue retention mitigated short-term adverse effect of clear-cutting on soil carbon and nitrogen dynamics in subtropical Australia[J]. Journal of soils and sediments, 2019, 19: 3786-3796.
9. Zhang Y, Zhang M, Tang L, et al. Long-term harvest residue retention could decrease soil bacterial diversities probably due to favouring oligotrophic lineages[J]. Microbial ecology, 2018, 76: 771-781.
10. Zhang Y, Drigo B, Bai S H, et al. Biochar addition induced the same plant responses as elevated CO 2 in mine spoil[J]. Environmental Science and Pollution Research, 2018, 25: 1460-1469.
11. Zhang Y, Chen H, Bai S H, et al. Interactive effects of biochar addition and elevated carbon dioxide concentration on soil carbon and nitrogen pools in mine spoil[J]. Journal of Soils and Sediments, 2017, 17: 2400-2409.
12. Zhang Y, Menke C, Drigo B, et al. Assessing the potential of using biochar in mine rehabilitation under elevated atmospheric CO 2 concentration[J]. Journal of Soils and Sediments, 2017, 17: 2410-2419.
13. 张亚玲, 徐义刚. 辉石岩: 高压结晶还是再循环洋壳?[J]. 高校地质学报, 2012, 18(1): 74.
其它论文
14. Wang Z, Wang W, Huang J G, et al. An improved assessment of forest disturbance using a novel approach of combining a Gaussian mixture model with an EM algorithm[J]. Ecological Indicators, 2024, 166: 112564.
15. Yang F, Yan Y, Liang H, et al. Radial Growth Response of Siberian Pines to Climate Warming in the Sayan Mountains, Southern Siberia, Russian Federation[J]. Forests, 2023, 14(3): 463.
16. Huang J G, Campelo F, Ma Q, et al. Reply to Elmendorf and Ettinger: Photoperiod plays a dominant and irreplaceable role in triggering secondary growth resumption[J]. Proceedings of the National Academy of Sciences, 2020, 117(52): 32865-32867.
17. Huang J G, Ma Q, Rossi S, et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers[J]. Proceedings of the National Academy of Sciences, 2020, 117(34): 20645-20652.
18. Zhang M, Wang J, Bai S H, et al. Assisted phytoremediation of a co-contaminated soil with biochar amendment: contaminant removals and bacterial community properties[J]. Geoderma, 2019, 348: 115-123.
19. Zhang M, Wang W, Zhang Y, et al. Effects of fungicide iprodione and nitrification inhibitor 3, 4-dimethylpyrazole phosphate on soil enzyme and bacterial properties[J]. Science of the Total Environment, 2017, 599: 254-263.
20. Zhang M, Bai S H, Tang L, et al. Linking potential nitrification rates, nitrogen cycling genes and soil properties after remediating the agricultural soil contaminated with heavy metal and fungicide[J]. Chemosphere, 2017, 184: 892-899.
21. Zhang M, Teng Y, Zhang Y, et al. Effects of nitrification inhibitor 3, 4-dimethylpyrazole phosphate and fungicide iprodione on soil fungal biomass and community: based on internal transcribed spacer region[J]. Journal of Soils and Sediments, 2017, 17: 1021-1029.